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Abstract In this brief comment, an enhancement of
results published in the article “Chaotic oscillator based
on memcapacitor and meminductor” (Nonlinear Dyn,
DOI: https://doi.org/10.1007/s11071-019-04781-5), is
described. It was shown that the proposed chaotic oscil-
lator can be extended to its fractional-order form, where
various dynamical properties, as for example, the one-
scroll attractor can be observed. A simple numerical
solution of the new fractional-order chaotic system for
simulations, further analysis and investigation is pre-
sented as well.
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1 Introduction

Research in area of chaotic systems and their analy-
sis has quite a long tradition. Recently a new type of
electrical circuits which exhibit chaos have been inves-
tigated. Such oscillators are represented by simple elec-
trical circuits consist of new electrical elements, such as
memristor, memcapacitor, and meminductor. It opens
a new area of chaotic systems, for example, see [1-4].

On the other hand, the subject of fractional calculus
has reached popularity and importance during the past

L. Petras ()

Faculty of BERG, Technical University of KoSice,
Némcovej 3, 042 00 Kosice, Slovak Republic
e-mail: ivo.petras @tuke.sk

few decades. The basic symptoms, which should be
presented in the system in order to the fractional calcu-
lus should be used are: recursion, fractality, roughness,
heredity, (long) memory. Fractional calculus, ak.a.
non-integer calculus, is known since the classical cal-
culus with the first written reference dated September
1695 in the letters between Leibniz and L'Hospital.
Nowadays, the fractional calculus has a wide area of
applications in various fields as well as in the chaotic
systems [5].

Taking into account above considerations, we may
combine the fractional calculus technique and model-
ing of the chaotic oscillators, where the new concept
of electrical circuits with memristive elements is used
[6-8].

This brief comment is organized as follows. Section
1 introduces the problem and main motivation. In Sect.
2 the fractional calculus fundamentals are described. In
Sect. 3 the memristive systems are discussed. Section
4 presents a new model of the fractional-order chaotic
system. In Sect. 5 the simulation results are presented.
In Sect. 6 the conclusions of this comment and further
possible research in this area are discussed.

2 Preliminaries
2.1 Definition of fractional-order derivative/integral

Fractional calculus is a generalization of integration
and differentiation to joint non-integer y -order operator
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a DZ , where a and b are the bounds of the operation. The
standard notation for denoting the common left-sided
integro-differential operator of a function f(¢) defined
within the interval [a, t] is aD,yf(t), with y € R.

There exist many definitions for the fractional-order
operator (fractional-order integrals for y < 0 and
derivatives for y > 0) butin this article, we will restrict
only on the Caputo’s definition (CD) and the Griinwald-
Letnikov definition (GLD), respectively.

The CD, forn — 1 < y < n, can be written as [9]:

A
-y Jo G—op=1"
In case of electrical circuits, where the fractional
derivative is used in fractional-order model of circuit
elements, the Caputo’s definition can be used because
the initial conditions for the fractional differential equa-
tions with the Caputo derivatives are in the same form as
for ordinary differential equations, i.e., f (”)(O) = ¢y,
Vn € N.
The GLD is given as follows [9,10]:

5
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oD f(O) = lim o5 3 (1) (?)f(t ~ih). ()
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aDtyf(t) =
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where | z] is the floor function, i.e., the greatest integer
smaller than z, and

<y> _ I'(y+1) 3)
i) TG+DI(y—i+1)

are the binomial coefficients for (}}) = 1. This form
of the derivative definition is very helpful for obtaining
anumerical solution of fractional differential equation.

2.2 Numerical solution of fractional differential
equation

Since the both definitions CD and GLD are equivalent
for a wide class of the functions, for numerical cal-
culation of fractional-order derivative we can use the
relation (4) derived from the GLD (2). The relation for
the numerical approximation of y-th derivative at the
points khg, (k = 1,2,3,...) has the following form
[9]:

k
(k=L /) DI [ (1) = hs” chy)f(tk—i)a 4
i=0
where L,, is the “memory length”, #; = khy, hj is the
time step of calculation (definition (4) is valid only as A
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tends toward 0 and that the accuracy of the simulation
depends on the value of /) and clm (i=0,1,2,...)
are the binomial coefficients. For their calculation we
may use the following expression:

1+
C(()y) =1, C,(y) = (1 - V) Ci(z)l- (5)

Thus, general numerical solution of the fractional dif-
ferential equation (initial value problem)

oD} x(t) = f(x(1), 1),

can be expressed as follows [5,11]:

k
x(1) = f (@, 10 by =Y e tei). (©)
i=0
For the memory term expressed by the sum, a “short
memory” principle for various length L,, can be used.
An evaluation of the short memory effect and con-
vergence relation of the error between short and long
memory were very clearly described and proved in [9].

3 Fractional-order memristive systems

There are a huge number of electrical circuit where
the fractional calculus can be used (e.g., [12—14], etc.);
however, the classical circuit theory is limited to the
variables v, i, g, and ¢, which are used for description
of all four basic devices (resistor, capacitor, inductor,
and memristor). The memristor was postulated by Leon
Chua in 1971 [15] and manufactured by HP in 2008
[16]. Moreover, other devices (memcapacitor, menin-
ductor) recently introduced in [17] are located beyond
these limits. Certain circuit elements, memcapacitor
and meninductor, involve not only those four variables
but also the time-integrals of the charge and the flux
[18]. These new state variables lead to the so-called
“mem” systems, which are a class of higher-order
devices. These memory elements are a general term
and belong to group of memristive systems [19]. Such
memristive systems can be described by fractional-
order models [6,7,20-22]. This notion is also based
on the fact, that there is not ideal electrical element and
the real elements lie in between two ideal, e.g., fractor
or fractductor [5,13,23].

Since, the real capacitor and the real inductor have
been investigated by many authors and the experimen-
tal evidences of their real orders of the models were
confirmed [14,24,25], real memristor, memcapacitor,
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and meminductor, were not investigated experimen-
tally yet, just by simulation models or by the emulators
[26-28].

However, there are many electrical circuits, mainly

oscillators, where memristor, memcapacitors, and memin-

ductors, have been used [29,30]. Nowadays, applica-
tion of such elements also in other type of circuits
rapidly grows, for instance, new kind of PID controller
[31], neuron network model [32], and so on.

Le us recall to a linear capacitor model proposed in
1994 by Westerlund and Ekstam [24]. For a general
input voltage v (), applied at r = 0, the current is
i(t)=CoDfv(t), O0<a<1, for >0, @)
where C is the capacitance of the capacitor with unit
[E/s!—@]. It is related to the kind of dielectric. Another
constant « (order), ¢ € R, is related to the losses
of the capacitor. Westerlund and Ekstam provided in
their work the table of various capacitor dielectrics with
appropriate constant « which has been obtained exper-
imentally by measurements on the real capacitors.

By using the relations, described in [18], for mem-
capacitor and meminductor and well-known relations
between four basic elements (resistor, capacitor, induc-
tor, memristor), we can obtain another floor of the four
square symmetry, which is depicted in Fig. 1.

As we can observe in Fig. 1, some additional elec-
trical elements, were not discovered so far.

4 Model of the fractional-order chaotic system

In paper [30], the chaotic oscillator circuit based on the
resistor, capacitor, negative resistor, memcapacitor and
meminductor was introduced. According to Kirchhoff
laws and additional scale transformation the chaotic
system can be presented as the following dimensionless
dynamical system:

d’;y) = az(t) + bz(Hw () — x(1),

% = dy(t) + ey (1) — f2(1) = gz(Hw (@),
EO by + iy ~ ke,

dl()l(tt) =nay (1), ®

where for the parameters: a = 1.73, b = —2.04,d =
0.46,¢ = 0.04, f =0.67,g =0.19,h =048, j =

dp=L,,dq

dg=Cdv

dv=Rdi

Fig. 1 Connection of known electrical elements (Inspired by
Refs. [8,18])

0.52, k = n1 = ny = 0.21, the initial values setting:
x(0) = 0.2, y(0) = 0.5, z(0) = 0.45, w(0) = 0.1,
v(0) = 0.5, the chaotic attractor was obtained.

Taking into account the consideration described in
previous section, the fractional-order models of the ele-
ments used in the chaotic oscillator (Fig. 5 in [30])
could be applied to Kirchhoff laws. Then, instead of
the system (8), we obtain the following set of fractional
differential equations:

oD!' x(t) = az(t) + bz(Hw(r) — x(1),

oDy (1) = dy(t) + ey(Hv*(t) — fz(t) — gz(Hw(®t),
0Dl z(t) = hy(t) + jy(Ov* (1) — kx (1),

oD*w(t) = niz(t),

oD v(1) = nay (1), 9)
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where y1, 2, V3, V4, and ys are the real orders of the
elements used in the chaotic oscillator, described in
[301].

For simulation purposes we will use a numeri-
cal solution of the fractional deferential equations (9)
obtained by using the relationships (4) and (5) as well
as the principle (6), which lead to equations in the form:

x(ty) = [az(te—1) + bz(te—)w(tx—1) — x (tr—1) 1Y
k
=3 e x(w),
i=0
y(te) = [dy(te—1) + ey(t—1)v(te—1)* — fz(te—1)
k
—gz(t)w(te-n1h = > ey (1),

i=0
2(t) = [hy(te—1) + jy(t—1)v(te—1)* — kx(tx—1)1hY

k
- ZC,(%)Z(Z‘kfi)a
i=0

k
w(te) = [mz(e-DIAL =Y e,

i=0
k
v(t) = [y (te-D1hY =" e v, (10)
i=0
where Tj;,, is the simulation time, k = 1,2,3..., N,

for N = [Tsim/ hs], and (x(0), y(0), z(0), w(0), v(0))
is the start point (initial conditions). The binomial coef-

1) () (r3) (ya) (vs5)
Ci i i i

ficients ¢;"", ¢;"*, ¢;"”", ¢;"", and ¢
according to relation (5), respectively.
For further simulations and analysis the numerical

solution (10) of the system (9) was coded in MATLAB.

are calculated

5 Simulation results

Let us use proposed numerical solution (10) to simu-
late chaotic system (9) for the same parameters and ini-
tial conditions setting as they were defined for chaotic
system (8), for simulation time Ty, = 1000 s, time
step gy = 0.005, derivative orders y; = 0.9, y» = 1,
y3 =1, y4 = 1, and y5s = 1. Let us assume y; = 0.9,
which corresponds to the real order of many capacitors
as well as the capacitor Cp used in the chaotic oscillator
circuit (Fig. 5 in [30]). Obviously, for a real oscillator
circuit with the real capacitor C; the order y; should
be experimentally measured. However, in [30] was not
built the real circuit and therefore is unknown the capac-
itor model number. Moreover, other elements, namely
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Fig. 2 Chaotic attractor in x — y state plane of system (9)

w(t)

x(t)

Fig. 3 Chaotic attractor in x — w state plane of system (9)

memcapacitor Cp; and meminductor Ly, in circuit are
just artificial and were not manufactured yet.

In Figs. 2, 3, 4, 5, 6 and 7 are depicted chaotic
behavior (one-scroll attractor) of the system (9) for the
parameters the initial conditions setting as in (8), and
y1 = 0.9, » = y3 = y4 = ys = 1, in various state
planes, respectively.

The Lyapunov exponents of the system (9), com-
puted according to method described in [33], for the
parameters as in (8), and orders y; = 0.9, y» = y3 =
y4 = ys = 1, have the following values: 0.5807,
—0.1683, —0.0047, —0.9647, — 1.0267, which con-
firm the chaotic behavior because at least one exponent
is positive.
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Fig. 4 Chaotic attractor in y — w state plane of system (9)
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Fig. 5 Chaotic attractor in z — w state plane of system (9)
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Fig. 6 Chaotic attractor in z — v state plane of system (9)
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Fig. 7 Chaotic attractor in w — v state plane of system (9)

6 Conclusions

In this comment, we mentioned that the results pre-
sented in paper [30] can be enhanced. Proposed chaotic
oscillator consists of meminductor and memcapaci-
tor as well as resistor, capacitor and negative resistor,
can be described by fractional differential equations.
Applying fractional-order derivative into the mathe-
matical model of the oscillator elements, a memory
effect and other dynamical properties are caught. More-
over, we obtain more degree of freedom due to the
derivative orders.

Since, the orders of the real capacitors and induc-
tors models have been investigated and experimentally
confirmed, there is not an experimental evidence of
real orders in model of memristors, meminductors and
memcapacitors because they are not commercially pro-
duced and sold. However, proposed fractional-order
model of the chaotic oscillator allows us to use the frac-
tional orders, except for capacitor Cp order y, also for
memcapacitor Cy; order y, as well as for meminduc-
tor Ly order y3. Even more, instead negative resistor
G a memristor can be used. This is an idea for fur-
ther research in this field of chaotic oscillator circuits.
Moreover, it opens anew area for research of the chaotic
systems dynamics.
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